If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-12x-62=0
a = 3; b = -12; c = -62;
Δ = b2-4ac
Δ = -122-4·3·(-62)
Δ = 888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{888}=\sqrt{4*222}=\sqrt{4}*\sqrt{222}=2\sqrt{222}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{222}}{2*3}=\frac{12-2\sqrt{222}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{222}}{2*3}=\frac{12+2\sqrt{222}}{6} $
| x-6.5=1.20 | | -3.3=b/0.2-2.8 | | 7+3m=1 | | 10.5x-3.5=9x+1 | | 4(5x/6)=12 | | 12³-3²+2=x | | -12+5n=-17 | | -(3x-6)=15 | | 3x+5=-13-6xx= | | p-3=17.5 | | x=12³-2 | | n/9+8=6 | | -4=x=+(-8) | | 31+n=95 | | 28-4p=7(6p+4) | | 7x=47-1 | | -5-4x+x=19x= | | F(x)=12(1.16)^x | | h/2-12=-15 | | 2x=210-2² | | b/3-19=-20 | | -10+t=20 | | 2(x+1)^2-(x+1)+3=0 | | 8x4+x=84 | | 17=x+x+7x= | | 45+x=144+107=180 | | 4x+8=-20x= | | 6x-2(4-2x)-4(x-3)=3 | | -13a+45=84 | | 25+b/7=47 | | 10x-3+7=2-4+7x | | 54-103=1x+7 |